SUSY Reconstruction with Athena in DC1 Frank E. Paige, Brookhaven National Laboratory For first SUSY full simulation chose mSUGRA point similar to Point 5 but consistent with current bounds ($M_h = 114.8 \,\text{GeV}$): $$m_0 = 100 \,\text{GeV}, \, m_{1/2} = 300 \,\text{GeV}, \, A_0 = -300 \,\text{GeV}, \, \tan \beta = 6, \, \text{sgn} \, \mu = +$$ Has similar $\tilde{\chi}_2^0 \to \tilde{\ell}_R^{\pm} \ell^{\mp}$ (8.8%) signature. Also gives $\tilde{\chi}_2^0 \to \tilde{\tau}_1^{\pm} \tau^{\mp}$ (75%) and $\tilde{\chi}_1^{\pm} \to \tilde{\tau}_1^{\pm} \nu_{\tau}$ (68%) \Rightarrow many τ 's. Analysis chain [Athens, Note]: - Generate 100k events with Herwig, using Isajet for SUSY input. - Simulate ATLAS response with Atlsim (Fortran, GEANT 3.21), tracking each particle through detectors. About 15m/event. - Reconstruct simulated data with Athena 6.0.3 (C++) to make Ntuple with physics quantities. About 1m/event (done many times). - Analyse Combined Ntuple with Fortran code linked to Paw. SUSY provides good test of reconstruction: complex events, many different signatures. Have studied efficiency, purity, and resolution for jets, electrons, muons, taus, and \mathbb{E}_T with Athena 6.03/7.02. No pileup has been included. Electronic noise turned off except as noted; significant effect for liquid argon calorimeters. No Standard Model background. For physics plots, make same cuts as before \Rightarrow expect $S/B \gg 1$. Have learned a lot about real reconstruction of SUSY events over last year. Much more to do, but Athena reconstruction is already usable. Have even managed to produce some new physics results. # **Jet Reconstruction and Calibration** Have used two Athena jet algorithms for SUSY studies: - (Seeded) Cone: Iterate cone with fixed *R*. Not infrared safe, but works OK in practice. - K_T : Well optimized Cambridge code, but still $T \propto N^3$. Calorimeter in Athena is calibrated at EM scale, so $\sim 15\%$ low for jets. TDR corrected for this using sampling weights. H1 algorithm: EM showers are denser than hadronic ones, so use unit weight for high E_T -cells, larger weight for low- E_T ones. To determine weights, sum cells in E_T bins for each jet and calorimeter section. Fit weights by comparing calorimeter jet with nearest jet made from MC particles using same jet algorithm. # Resulting resolution for 2 DC1 QCD jet samples: Mean response is about correct and Resolution also somewhat better. Same H1-style weights also improve \mathbb{E}_T resolution. Reconstruct jets in SUSY using same weights, and again compare with closest MC jet. Compare reconstructed (solid) and Monte Carlo (dash) jets for $E_T > 25,50,100\,\text{GeV}$: H1 calibration also works for SUSY sample dominated by quark jets, but observe some problems: Calorimeter segmentation changes at $\eta = 2.5$. Crack between endcap and forward calorimeters at $\eta = 3.2$. Shower leakage at large η . -5- Just before Athens, included electronic noise but not pileup. KT algoritm requires E > 0. Huge effect with E = 0 cut (dash-dot), still large with $E = 2\sigma_E$ cut (dash) on multiplicity and resolution for $E_T = 80$ –120 GeV: Smaller effect for cone algorithm with R = 0.4, so many fewer towers. Since Athens, have implemented cancellation of E < 0 CaloTower's with nearby E > 0 ones and applied H1 weights before clustering. Much better agreement between Monte Carlo (dash) jets and reconstructed ones with (solid) than without (dashdot) preweighting: Still not perfect; need a lot of work to achieve 1% hadronic energy scale and best possible jet energy resolution. ### **Electron Reconstruction** Electrons identified by shower shape (require eg_IsEM = 0) and matching track with $E/p \approx 1$. Must make loose cut in endcap to get adequate efficiency: $$0.8 < \frac{E}{p} < 1.3, |\eta| < 1.37$$ $$0.7 < \frac{E}{p} < 2.5, |\eta| > 1.37$$ Then efficiency for isolated MC electrons is $\gtrsim 85\%$. Efficiency depends weakly on E_T for $E_T > 10 \,\text{GeV}$. Plot integral distribution for $E_T > 10,25 \,\mathrm{GeV}$ of distance R between reconstructed e and closest MC one. Mostly R < 0.1, but see $\sim 4\%$ fakes for $E_T > 25 \, \text{GeV}$. If fakes are from jets, 6.3 jets and 0.16 electrons per event imply fake e/j rate is $\sim 10^{-3}$, worse than expected. But half of fake e's are close to τ 's, more like e's than jets. Fake e's peak at $\eta = 1.1$ near gap in HCAL: Obviously need more work on e identification in complex events, e.g., with large τ background. -10- # Resolution (compared to nearest MC e) for $E_T > 25 \,\text{GeV}$: Gaussian fit gives 0.9844 ± 0.02253 . Need brem recovery for radiative tail. Need work on e energy scale. # Muons MuonBox gives excellent results – better than 90% overall acceptance. Dip in acceptance at $\eta = 0$ due to holes for services: Matching of MuonBox with inner detector not yet in Athena. -12- # Moore/MuID available in 7.0.2. Matching to inner detector improves purity with small loss of accecptance: Some background is from π , K decays. Significant improvement in resolution for low- p_T muons. Resolutions for $p_T > 10 \,\text{GeV}$ with external, stand alone, and combined: Gaussian fit gives 0.9992 ± 0.02615 for combined curve. # τ Reconstruction τ 's are important SUSY signature. Hadronic $\tau \Rightarrow 1$ track with $p_T > 2 \,\text{GeV}$, $E_{T,\text{had}} \neq 0$, and narrow shower in EM calorimeter. Shower shape L_{τ} distributions for τ 's and jets before (dashed) and after (solid) track cuts and resulting efficiency for $E_{T, \text{vis}} > 35 \,\text{GeV}$: -15- SUSY Studies for ATLAS # Matching in R of reconstructed to MC τ 's and E_T resolution: Significant background from mis-identified jets; $S/B \approx 2.8$. Energy calibration for τ 's with MC match is roughly OK. Just before Athens, included calorimeter noise with 2σ cut but no pileup. Efficiency is worse, especially at low η , and S/B also degraded: Need to retune τ selection cuts including noise and pileup. -17- # \mathbf{E}_T Reconstruction Observe $-15\,\text{GeV}$ shift in mean compared to Monte Carlo, not seen in $A \to \tau\tau$ events: Resolution approximately given by $0.76\sqrt{\sum E_T}$ but degrades at large $\sum E_T$. Slightly worse when noise is included. # **SUSY Physics with Full Simulation** Use Point 5 selection cuts from *TDR*: - \geq 4 jets with $E_T > 100, 50, 50, 50 \,\text{GeV}$; - $M_{\rm eff} > 800 \,{\rm GeV};$ - $E_T > \max(100 \,\text{GeV}, 0.2 M_{\text{eff}}).$ Then expect negligible SM background, so just show SUSY distributions. Recall $\tilde{\chi}_2^0 \to \tilde{\ell}_R^{\pm} \ell^{\mp} \to \tilde{\chi}_1^0 \ell^+ \ell^-$ has endpoint at $$M_{\ell\ell}^{\text{max}} = \sqrt{(M_{\tilde{\chi}_2^0}^2 - M_{\tilde{\ell}}^2)(M_{\tilde{\ell}}^2 - M_{\tilde{\chi}_1^0}^2)/M_{\tilde{\ell}}^2} = 100.16 \,\text{GeV}.$$ $e^+e^- + \mu^+\mu^- - e^\pm\mu^\mp$ cancels backgrounds from independent decays. Correct E_e scale by 1.017 and weight each electron by 1.16 for relative acceptance. Then find correct endpoint after subtraction. $\mu^{+}\mu^{-}$, $e^{+}e^{-}$, $e^{\pm}\mu^{\mp}$, and weighted $e^{+}e^{-} + \mu^{+}\mu^{-} - e^{\pm}\mu^{\mp}$ masses: Main source of $\tilde{\chi}_2^0$ is $\tilde{q}_L \to \tilde{\chi}_2^0 q$. Assume 2 hardest jets are from \tilde{q}_L and combine with dileptons. Find approximately right endpoints, but tails not yet understood. For $\tau^+\tau^-$ use all Monte Carlo $\tilde{\chi}_2^0 \to \tilde{\tau}_1^{\pm}\tau^{\mp}$ events to find expected $M_{\tau\tau, \text{vis}}$ distribution. Fit shape to reconstructed $\tau^+\tau^- - \tau^{\pm}\tau^{\pm}$ mass: Fit gives $103.5 \pm 4.9 \,\text{GeV}$, consistent with $98.3 \,\text{GeV}$. Sensitive to fit range since $M_{\tau\tau, \text{vis}}$ distorted by cuts at low mass. Shape also depends on τ polarizations, but effect not easy to observe [Vacavant]. $\tilde{q}_R \tilde{q}_R \to \tilde{\chi}_1^0 q \tilde{\chi}_1^0 q$ gives 2 jets + E_T . Veto jets with $E_T > 25(50)$ GeV and plot M_{T2} using known $M_{\tilde{\chi}_1^0}$. True endpoint is 611 GeV. Compare with single jet distribution for Point 6 [Note, TDR]: Much better result from full simulation using M_{T2} than from fast simulation using $p_T(!)$. -22- # **Athena Outlook** Athena reconstruction works — with real data we could start doing physics. But much remains to be done. Concentrate here on combined reconstruction and physics issues: ### **Jets** - Improve H1 calibration, perhaps using E/V rather than E_T /cell. Include muons. Calibration for identified clusters? - Study clustering contribution to resolution. Could use single particles and R = 0.4 single jets from MC events. - Develop in situ calibration from physics data, e.g. Z + jet(s). - Study preclustering. Is jet recalibration from ESD practical? - Investigate jet corrections for measurements like $\ell\ell q$ endpoint. - Study SUSY events below $\ell\ell q$ threshold (not seen with Atlfast). ### Muons - Understand source(s) of $\sim 4\%$ background in SUSY sample. - Implement calorimeter and tracking isolation for muons. ### **Electrons** - Study energy calibration and apparent $e/\text{jet} \sim 10^{-3}$. - Fix isem() calorimeter cuts to allow subsequent selection changes. Include calorimeter and tracking isolation. - Study E/p matching in endcap and TRT as pion veto. ### **Taus** - Improve efficiency and jet rejection including noise. Try tracking isolation, Heldmann's likelihood. - Study τ polarization measurement and impact on visible $M_{\tau\tau}$. - Fix double τ 's from sliding window algorithm. - Revisit τ energy calibration using experience from jets. - Study soft τ 's for SUSY coannihilation point. # **Missing Energy** • Investigate offset and variation with $\sum E_T$ seen in SUSY sample. ## **Vertexing** - Develop primary vertex algorithm that works with pileup. - Get b tagging in Athena! Then use it. #### **New Work** - Redo everything including pileup. - Measure partial rates ⇔ branching ratios. Luminosity? Goal for DC2 physics (Athena 9.0.0) should be reconstruction closer to realizing design goals of ATLAS detector. ### **References** - [Athens] Talks by D. Costanzo, F. Paige, and D. Tovey, Athens Physics Workshop, http://agenda.cern.ch/fullAgenda.php?ida=a031081. - [Note] M. Biglietti, et al., ATL-PHYS-2004-011. - [Vacavant] Talk by L. Vacavant, Lund Physics Workshop, http://agenda.cern.ch/fullAgenda.php?ida=a0159. - [TDR] ATLAS Collaboration, Detector and Physics Performance Technical Design Report, CERN/LHCC 99-14.